2017-10-10
Author: Zhiguang Guo
Publisher: John Wiley & Sons
ISBN: 3527806717
Category : Technology & Engineering
Languages : en
Pages : 300
Get Book
Book Description
A comprehensive and systematic treatment that focuses on surfaces and interfaces phenomena inhabited in biomimetic superhydrophobic materials, offering new fundamentals and novel insights. As such, this new book covers the natural surfaces, fundamentals, fabrication methods and exciting applications of superhydrophobic materials, with particular attention paid to the smart surfaces that can show switchable and reversible water wettability under external stimuli, such as pH, temperature, light, solvents, and electric fields. It also includes recent theoretical advances of superhydrophobic surfaces with regard to the wetting process, and some promising breakthroughs to promote this theory. As a result, materials scientists, physicists, physical chemists, chemical engineers, and biochemists will benefit greatly from a deeper understanding of this topic.
Author: Zhiguang Guo
Publisher: John Wiley & Sons
ISBN: 3527806717
Category : Technology & Engineering
Languages : en
Pages : 300
View
Book Description
A comprehensive and systematic treatment that focuses on surfaces and interfaces phenomena inhabited in biomimetic superhydrophobic materials, offering new fundamentals and novel insights. As such, this new book covers the natural surfaces, fundamentals, fabrication methods and exciting applications of superhydrophobic materials, with particular attention paid to the smart surfaces that can show switchable and reversible water wettability under external stimuli, such as pH, temperature, light, solvents, and electric fields. It also includes recent theoretical advances of superhydrophobic surfaces with regard to the wetting process, and some promising breakthroughs to promote this theory. As a result, materials scientists, physicists, physical chemists, chemical engineers, and biochemists will benefit greatly from a deeper understanding of this topic.
Author: Iskender Yilgoer
Publisher: Smithers Rapra
ISBN: 1910242861
Category : Science
Languages : en
Pages : 258
View
Book Description
Surface properties play critical roles in determining the durability and overall performance of polymeric materials for applications in many different fields. Recent investigations on naturally superhydrophobic surfaces such as plant leaves and insect wings led to a clear understanding of the close relationship between surface topography, roughness, chemical structure and superhydrophobicity. This led to a dramatic increase in research efforts on the preparation and characterisation of polymeric systems with superhydrophobic surfaces. Current and potential uses of such materials in a wide range of applications also make them commercially very attractive.The main focus of this book is to provide a comprehensive overview of the new developments regarding the preparation and characterisation of superhydrophobic polymeric surfaces. A large number of methods used in the preparation of robust and durable superhydrophobic polymer surfaces and their advantages and disadvantages are discussed. Close relationship between the polymer composition, hierarchical micro/nano surface topography and superhydrophobic behavior are provided. In addition to the practical aspects, special emphasis is also given to the discussion of the theoretical foundations of the wetting behavior of rough surfaces.Nature is the ultimate guide for the preparation of functional materials and surfaces. As discussed in detail in the book, using biomimetic approaches it is possible to design and produce superhydrophobic surfaces with interesting functionalities. The most critical tasks for the scientists and engineers working in the field seem to be; (i) to clearly understand the relations between surface compositions, topography and surface properties; (ii) to develop simple laboratory techniques and commercially viable production methods to produce superhydrophobic surfaces and devices mimicking the natural systems; and (iii) to demonstrate novel applications in research laboratory and develop commercial applications for these materials with smart and multifunctional surfaces.This book provides a clear understanding of the theoretical foundations of superhydrophobicity together with practical experimental guidance for the preparation of such polymeric surfaces to researchers and application engineers working in the field.
Author: Hari Singh Nalwa
Publisher:
ISBN:
Category : Colloids
Languages : en
Pages : 536
View
Book Description
This handbook brings together, under a single cover, all aspects of the chemistry, physics, and engineering of surfaces and interfaces of materials currently studied in academic and industrial research. It covers different experimental and theoretical aspects of surfaces and interfaces, their physical properties, and spectroscopic techniques that have been applied to a wide class of inorganic, organic, polymer, and biological materials. The diversified technological areas of surface science reflect the explosion of scientific information on surfaces and interfaces of materials and their spectroscopic characterization. The large volume of experimental data on chemistry, physics, and engineering aspects of materials surfaces and interfaces remains scattered in so many different periodicals, therefore this handbook compilation is needed. The information presented in this multivolume reference draws on two decades of pioneering research on the surfaces and interfaces of materials to offer a complete perspective on the topic. These five volumes-Surface and Interface Phenomena; Surface Characterization and Properties; Nanostructures, Micelles, and Colloids; Thin Films and Layers; Biointerfaces and Applications-provide multidisciplinary review chapters and summarize the current status of the field covering important scientific and technological developments made over past decades in surfaces and interfaces of materials and spectroscopic techniques with contributions from internationally recognized experts from all over the world. Fully cross-referenced, this book has clear, precise, and wide appeal as an essential reference source long due for the scientific community. The complete reference on the topic of surfaces and interfaces of materials The information presented in this multivolume reference draws on two decades of pioneering research Provides multidisciplinary review chapters and summarizes the current status of the field Covers important scientific and technological developments made over past decades in surfaces and interfaces of materials and spectroscopic techniques Contributions from internationally recognized experts from all over the world.
Author: Hari Singh Nalwa
Publisher:
ISBN:
Category : Biological interfaces
Languages : en
Pages : 568
View
Book Description
Author: Prasad Yarlagadda
Publisher: Trans Tech Publications Ltd
ISBN: 3038262978
Category : Technology & Engineering
Languages : en
Pages : 2162
View
Book Description
Volume is indexed by Thomson Reuters CPCI-S (WoS). Collection of selected, peer reviewed papers from the 3rd International Conference on Materials and Products Manufacturing Technology (ICMPMT 2013), September 25-26, 2013, Guangzhou, China. The 402 papers are grouped as follows: Chapter 1: Micro/Nano Materials and Films; Chapter 2: Polymer Materials; Chapter 3: Composites; Chapter 4: Ceramic; Chapter 5: Metal, Alloys and Mining Engineering; Chapter 6: Chemical Materials; Chapter 7: Biomaterials and Technology; Chapter 8: Surface Engineering/Coatings; Chapter 9: Building Materials, Construction and Architecture; Chapter 10: Material Processing Technology; Chapter 11: Sensors and Detecting Technology; Chapter 12: Signal and Intelligent Information Processing; Chapter 13: Electronic, Optoelectronic and Automation; Chapter 14: Industrial Robotics and Mechatronics; Chapter 15: Mechanical Design and Modeling; Chapter 16: CAD/CAM/CAE; Chapter 17: Product Design and Manufacture; Chapter 18: Advanced Manufacturing Technology; Chapter 19: Computer Applications and Mathematical Modeling; Chapter 20: Industrial Engineering and System Analysis; Chapter 21: Engineering Management and Engineering Education
Author:
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 520
View
Book Description
Author: Bong Kyun Oh
Publisher:
ISBN:
Category :
Languages : en
Pages :
View
Book Description
Author: Frédéric Guittard
Publisher: CRC Press
ISBN: 1351859595
Category : Science
Languages : en
Pages : 190
View
Book Description
Materials with superhydrophobic or related properties are one of the most studied subjects from a theoretical point of view and also for the large range of possible applications, for example, anticorrosion, antibacteria, optical devices, and sensors. The study of natural species with special wettability has shown us the importance of surface structures and the surface energy of the resulting surface properties. Various strategies can be used to reproduce superhydrophobic phenomena in the laboratory. General reviews on superhydrophobic properties already exist but, to our knowledge, do not focus on metallic and inorganic materials. Here, we focus especially on the strategies implemented for reaching superhydrophobic or related properties using metallic and inorganic materials. Indeed, these materials present unique properties, for example, thermal and mechanical resistance, chemical and ageing resistance, and optical (transparency, antireflection, photoluminescence) and electrical properties (conducting, semiconducting, insulating). This book will be useful for graduate students of materials chemistry and physics and for researchers in surface science, nanostructures, and bioinspired or biomimetic materials.
Author: Neville Zarir Mehenti
Publisher:
ISBN:
Category :
Languages : en
Pages : 324
View
Book Description
Author: Brendan McDonald
Publisher:
ISBN:
Category :
Languages : en
Pages :
View
Book Description
Using both artificial and natural templates, biomimetic micro-structures are fabricated on conventional coating materials (epoxy and silicone elastomers) to mimic both artificial and natural templates through effective pattern transfer processes. The pattern transfer processes use a soft-polymer negative stamp, where the flexibility of the stamp allows for easy conformation to both flat and curved surfaces. Patterns have been successfully transferred as a rigid epoxy to complex surfaces or as a soft elastomer replica of a hydrophobic Trembling Aspen leaf. The hydrophobicity and friction behaviour of the resulting micro-patterned surfaces are systematically investigated, showing that surface patterning can be used as an effective way to improve hydrophobicity while reducing the surface adhesion and friction without a loss of the structural integrity or rigidity typical of epoxy coatings. The relative strength of the micro-pattern was determined through indentation testing in order to support the claim of a robust pattern on the micro-scale that is able to withstand the harsh environment of industrial application or weather exposure. With the well characterized patterned epoxy material fabricated and able to be transferred to many different surfaces, the potential for the patterned surface to act as an icephobic coating was pursued. The robustness of the epoxy material with the unique ability to coat surfaces that are typically unable to possess a micro-structure makes this coating an ideal candidate for large-scale icephobic application. The potential use of a micro-patterned epoxy coating is investigated against comparable surface coatings within an innovative experimental set-up to measure the relative ice-adhesion strength of different substrates. In characterizing the relative shear-force required to remove frozen water droplets from the coating surface at the interface, several variables and factors were explored. The addition of a surface pattern was found to impact the icephobic ability of several materials, where different materials with the same pattern were compared to identify that the surface energy of the substrate influences the icephobic nature of a surface. Moreover, previous studies that relate the water contact angle or hysteresis to ice-adhesion strength are questioned through a preliminary qualitative analysis of ice adhesion strength data. This work demonstrates a potential process for the utilization of biomimetic epoxy micro-patterns as an enhanced hydrophobic and icephobic option for large scale protective coatings.