2010-05-29
Author: I-Hsien Ting
Publisher: Springer Science & Business Media
ISBN: 3642134211
Category : Computers
Languages : en
Pages : 187
Get Book
Book Description
Mining social networks has now becoming a very popular research area not only for data mining and web mining but also social network analysis. Data mining is a technique that has the ability to process and analyze large amount of data and by this to discover valuable information from the data. In recent year, due to the growth of social communications and social networking websites, data mining becomes a very important and powerful technique to process and analyze such large amount of data. Thus, this book will focus upon Mining and Analyzing social network. Some chapters in this book are extended from the papers that presented in MSNDS2009 (the First International Workshop on Mining Social Networks for Decision Support) and SNMABA2009 ((The International Workshop on Social Networks Mining and Analysis for Business Applications)). In addition, we also sent invitations to researchers that are famous in this research area to contribute for this book. The chapters of this book are introduced as follows: In chapter 1-Graph Model for Pattern Recognition in Text, Qin Wu et al. present a novel approach that uses a weighted directed multigraph for text pattern recognition. In the proposed methodology, a weighted directed multigraph model has been set up by using the distances between the keywords as the weights of arcs as well a keyword-frequency distance based algorithm has also been introduced. Case studies are also included in this chapter to show the performance is better than traditional means.
Author: I-Hsien Ting
Publisher: Springer Science & Business Media
ISBN: 3642134211
Category : Computers
Languages : en
Pages : 187
View
Book Description
Mining social networks has now becoming a very popular research area not only for data mining and web mining but also social network analysis. Data mining is a technique that has the ability to process and analyze large amount of data and by this to discover valuable information from the data. In recent year, due to the growth of social communications and social networking websites, data mining becomes a very important and powerful technique to process and analyze such large amount of data. Thus, this book will focus upon Mining and Analyzing social network. Some chapters in this book are extended from the papers that presented in MSNDS2009 (the First International Workshop on Mining Social Networks for Decision Support) and SNMABA2009 ((The International Workshop on Social Networks Mining and Analysis for Business Applications)). In addition, we also sent invitations to researchers that are famous in this research area to contribute for this book. The chapters of this book are introduced as follows: In chapter 1-Graph Model for Pattern Recognition in Text, Qin Wu et al. present a novel approach that uses a weighted directed multigraph for text pattern recognition. In the proposed methodology, a weighted directed multigraph model has been set up by using the distances between the keywords as the weights of arcs as well a keyword-frequency distance based algorithm has also been introduced. Case studies are also included in this chapter to show the performance is better than traditional means.
Author: Reda Alhajj
Publisher: Springer
ISBN: 9781493971305
Category : Computers
Languages : en
Pages : 3431
View
Book Description
Social Network Analysis and Mining Encyclopedia (ESNAM) is the first major reference work to integrate fundamental concepts and research directions in the areas of social networks and applications to data mining. The second edition of ESNAM is a truly outstanding reference appealing to researchers, practitioners, instructors and students (both undergraduate and graduate), as well as the general public. This updated reference integrates all basics concepts and research efforts under one umbrella. Coverage has been expanded to include new emerging topics such as crowdsourcing, opinion mining, and sentiment analysis. Revised content of existing material keeps the encyclopedia current. The second edition is intended for college students as well as public and academic libraries. It is anticipated to continue to stimulate more awareness of social network applications and research efforts. The advent of electronic communication, and in particul ar on-line communities, have created social networks of hitherto unimaginable sizes. Reflecting the interdisciplinary nature of this unique field, the essential contributions of diverse disciplines, from computer science, mathematics, and statistics to sociology and behavioral science, are described among the 300 authoritative yet highly readable entries. Students will find a world of information and insight behind the familiar façade of the social networks in which they participate. Researchers and practitioners will benefit from a comprehensive perspective on the methodologies for analysis of constructed networks, and the data mining and machine learning techniques that have proved attractive for sophisticated knowledge discovery in complex applications. Also addressed is the application of social network methodologies to other domains, such as web networks and biological networks.
Author: Mehmet Kaya
Publisher: Springer
ISBN: 9783319846316
Category : Computers
Languages : en
Pages : 245
View
Book Description
This book presents the state-of-the-art in various aspects of analysis and mining of online social networks. Within the broader context of online social networks, it focuses on important and upcoming topics of social network analysis and mining such as the latest in sentiment trends research and a variety of techniques for community detection and analysis. The book collects chapters that are expanded versions of the best papers presented at the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM’2015), which was held in Paris, France in August 2015. All papers have been peer reviewed and checked carefully for overlap with the literature. The book will appeal to students and researchers in social network analysis/mining and machine learning.
Author: Ting, I-Hsien
Publisher: IGI Global
ISBN: 1613505140
Category : Computers
Languages : en
Pages : 501
View
Book Description
"This book covers current research trends in the area of social networks analysis and mining, sharing research from experts in the social network analysis and mining communities, as well as practitioners from social science, business, and computer science"--Provided by publisher.
Author: Xu, Guandong
Publisher: IGI Global
ISBN: 1466628073
Category : Computers
Languages : en
Pages : 347
View
Book Description
Social Media Mining and Social Network Analysis: Emerging Research highlights the advancements made in social network analysis and social web mining and its influence in the fields of computer science, information systems, sociology, organization science discipline and much more. This collection of perspectives on developmental practice is useful for industrial practitioners as well as researchers and scholars.
Author: Gabor Szabo
Publisher: John Wiley & Sons
ISBN: 111882489X
Category : Computers
Languages : en
Pages : 352
View
Book Description
Harness the power of social media to predict customer behavior and improve sales Social media is the biggest source of Big Data. Because of this, 90% of Fortune 500 companies are investing in Big Data initiatives that will help them predict consumer behavior to produce better sales results. Social Media Data Mining and Analytics shows analysts how to use sophisticated techniques to mine social media data, obtaining the information they need to generate amazing results for their businesses. Social Media Data Mining and Analytics isn't just another book on the business case for social media. Rather, this book provides hands-on examples for applying state-of-the-art tools and technologies to mine social media - examples include Twitter, Wikipedia, Stack Exchange, LiveJournal, movie reviews, and other rich data sources. In it, you will learn: The four key characteristics of online services-users, social networks, actions, and content The full data discovery lifecycle-data extraction, storage, analysis, and visualization How to work with code and extract data to create solutions How to use Big Data to make accurate customer predictions How to personalize the social media experience using machine learning Using the techniques the authors detail will provide organizations the competitive advantage they need to harness the rich data available from social media platforms.
Author: Bhavani Thuraisingham
Publisher: CRC Press
ISBN: 1482243288
Category : Computers
Languages : en
Pages : 574
View
Book Description
Analyzing and Securing Social Networks focuses on the two major technologies that have been developed for online social networks (OSNs): (i) data mining technologies for analyzing these networks and extracting useful information such as location, demographics, and sentiments of the participants of the network, and (ii) security and privacy technologies that ensure the privacy of the participants of the network as well as provide controlled access to the information posted and exchanged by the participants. The authors explore security and privacy issues for social media systems, analyze such systems, and discuss prototypes they have developed for social media systems whose data are represented using semantic web technologies. These experimental systems have been developed at The University of Texas at Dallas. The material in this book, together with the numerous references listed in each chapter, have been used for a graduate-level course at The University of Texas at Dallas on analyzing and securing social media. Several experimental systems developed by graduate students are also provided. The book is divided into nine main sections: (1) supporting technologies, (2) basics of analyzing and securing social networks, (3) the authors’ design and implementation of various social network analytics tools, (4) privacy aspects of social networks, (5) access control and inference control for social networks, (6) experimental systems designed or developed by the authors on analyzing and securing social networks, (7) social media application systems developed by the authors, (8) secure social media systems developed by the authors, and (9) some of the authors’ exploratory work and further directions.
Author: Bhatnagar, Vishal
Publisher: IGI Global
ISBN: 1466642149
Category : Computers
Languages : en
Pages : 412
View
Book Description
Many organizations, whether in the public or private sector, have begun to take advantage of the tools and techniques used for data mining. Utilizing data mining tools, these organizations are able to reveal the hidden and unknown information from available data. Data Mining in Dynamic Social Networks and Fuzzy Systems brings together research on the latest trends and patterns of data mining tools and techniques in dynamic social networks and fuzzy systems. With these improved modern techniques of data mining, this publication aims to provide insight and support to researchers and professionals concerned with the management of expertise, knowledge, information, and organizational development.
Author: David Knoke
Publisher: SAGE
ISBN: 1412927498
Category : Social Science
Languages : en
Pages : 145
View
Book Description
Providing a general overview of fundamental theoretical and methodological topics, with coverage in greater depth of selected issues, the text covers various issues in basic network concepts, data collection and network analytical methodology.
Author: Derek Doran
Publisher: Springer
ISBN: 3319538861
Category : Computers
Languages : en
Pages : 101
View
Book Description
This brief presents readers with a summary of classic, modern, and state-of-the-art methods for discovering the roles of entities in networks (including social networks) that range from small to large-scale. It classifies methods by their mathematical underpinning, whether they are driven by implications about entity behaviors in system, or if they are purely data driven. The brief also discusses when and how each method should be applied, and discusses some outstanding challenges toward the development of future role mining methods of each type.