2015-03-17
Author: Yogesh Singh Chauhan
Publisher: Academic Press
ISBN: 0124200850
Category : Technology & Engineering
Languages : en
Pages : 304
Get Book
Book Description
This book is the first to explain FinFET modeling for IC simulation and the industry standard – BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture, as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, providing a step-by-step approach for the efficient extraction of model parameters. With this book you will learn: Why you should use FinFET The physics and operation of FinFET Details of the FinFET standard model (BSIM-CMG) Parameter extraction in BSIM-CMG FinFET circuit design and simulation Authored by the lead inventor and developer of FinFET, and developers of the BSIM-CM standard model, providing an experts’ insight into the specifications of the standard The first book on the industry-standard FinFET model - BSIM-CMG
Author: Yogesh Singh Chauhan
Publisher: Academic Press
ISBN: 0124200850
Category : Technology & Engineering
Languages : en
Pages : 304
View
Book Description
This book is the first to explain FinFET modeling for IC simulation and the industry standard – BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture, as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, providing a step-by-step approach for the efficient extraction of model parameters. With this book you will learn: Why you should use FinFET The physics and operation of FinFET Details of the FinFET standard model (BSIM-CMG) Parameter extraction in BSIM-CMG FinFET circuit design and simulation Authored by the lead inventor and developer of FinFET, and developers of the BSIM-CM standard model, providing an experts’ insight into the specifications of the standard The first book on the industry-standard FinFET model - BSIM-CMG
Author: Yogesh Singh Chauhan
Publisher: Elsevier
ISBN: 0323958230
Category : Technology & Engineering
Languages : en
Pages : 0
View
Book Description
FinFET/GAA Modeling for IC Simulation and Design: Using the BSIM-CMG Standard, Second Edition is the first to book to explain FinFET modeling for IC simulation and the industry standard – BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, thus providing a step-by-step approach for the efficient extraction of model parameters. With this book, users will learn Why you should use FinFET, The physics and operation of FinFET Details of the FinFET standard model (BSIM-CMG), Parameter extraction in BSIM-CMG FinFET circuit design and simulation, and more. Authored by the lead inventor and developer of FinFET and developers of the BSIM-CM standard model, providing an experts’ insight into the specifications of the standard Presents the first book on the industry-standard FinFET model - BSIM-CMG Includes a new chapter that provides a comprehensive introduction to GAA, including motivations, device concepts, structure, fabrication steps, benefits, and the industry standard GAA model Covers the recent developments in the BSIM-CMG model Updates on RF modeling of FinFET using BSIM-CMG model, including parameter extraction
Author: Chenming Hu
Publisher: Woodhead Publishing
ISBN: 0081024029
Category : Technology & Engineering
Languages : en
Pages : 258
View
Book Description
Industry Standard FDSOI Compact Model BSIM-IMG for IC Design helps readers develop an understanding of a FDSOI device and its simulation model. It covers the physics and operation of the FDSOI device, explaining not only how FDSOI enables further scaling, but also how it offers unique possibilities in circuits. Following chapters cover the industry standard compact model BSIM-IMG for FDSOI devices. The book addresses core surface-potential calculations and the plethora of real devices and potential effects. Written by the original developers of the industrial standard model, this book is an excellent reference for the new BSIM-IMG compact model for emerging FDSOI technology. The authors include chapters on step-by-step parameters extraction procedure for BSIM-IMG model and rigorous industry grade tests that the BSIM-IMG model has undergone. There is also a chapter on analog and RF circuit design in FDSOI technology using the BSIM-IMG model. Provides a detailed discussion of the BSIM-IMG model and the industry standard simulation model for FDSOI, all presented by the developers of the model Explains the complex operation of the FDSOI device and its use of two independent control inputs Addresses the parameter extraction challenges for those using this model
Author: Samar K. Saha
Publisher: CRC Press
ISBN: 0429998090
Category : Technology & Engineering
Languages : en
Pages : 318
View
Book Description
To surmount the continuous scaling challenges of MOSFET devices, FinFETs have emerged as the real alternative for use as the next generation device for IC fabrication technology. The objective of this book is to provide the basic theory and operating principles of FinFET devices and technology, an overview of FinFET device architecture and manufacturing processes, and detailed formulation of FinFET electrostatic and dynamic device characteristics for IC design and manufacturing. Thus, this book caters to practicing engineers transitioning to FinFET technology and prepares the next generation of device engineers and academic experts on mainstream device technology at the nanometer-nodes.
Author: Stephen M. Goodnick
Publisher: Springer
ISBN: 3319918966
Category : Technology & Engineering
Languages : en
Pages : 236
View
Book Description
This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Energy and information are interconnected and are essential elements for the development of human society. Transmission, processing and storage of information requires energy consumption, while the efficient use and access to new energy sources requires new information (ideas and expertise) and the design of novel systems such as photovoltaic devices, fuel cells and batteries. Semiconductor physics creates the knowledge base for the development of information (computers, cell phones, etc.) and energy (photovoltaic) technologies. The exchange of ideas and expertise between these two technologies is critical and expands beyond semiconductors. Continued progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions, new materials are being introduced into electronics manufacturing at an unprecedented rate, and alternative technologies to mainstream CMOS are evolving. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Semiconductor Nanotechnology features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors, quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.
Author: Alexandra Zimpeck
Publisher: Springer Nature
ISBN: 3030683680
Category : Technology & Engineering
Languages : en
Pages : 131
View
Book Description
This book evaluates the influence of process variations (e.g. work-function fluctuations) and radiation-induced soft errors in a set of logic cells using FinFET technology, considering the 7nm technological node as a case study. Moreover, for accurate soft error estimation, the authors adopt a radiation event generator tool (MUSCA SEP3), which deals both with layout features and electrical properties of devices. The authors also explore four circuit-level techniques (e.g. transistor reordering, decoupling cells, Schmitt Trigger, and sleep transistor) as alternatives to attenuate the unwanted effects on FinFET logic cells. This book also evaluates the mitigation tendency when different levels of process variation, transistor sizing, and radiation particle characteristics are applied in the design. An overall comparison of all methods addressed by this work is provided allowing to trace a trade-off between the reliability gains and the design penalties of each approach regarding the area, performance, power consumption, single event transient (SET) pulse width, and SET cross-section.
Author: Weidong Liu
Publisher: World Scientific
ISBN: 9812568638
Category : Technology & Engineering
Languages : en
Pages : 435
View
Book Description
This book presents the art of advanced MOSFET modeling for integrated circuit simulation and design. It provides the essential mathematical and physical analyses of all the electrical, mechanical and thermal effects in MOS transistors relevant to the operation of integrated circuits. Particular emphasis is placed on how the BSIM model evolved into the first ever industry standard SPICE MOSFET model for circuit simulation and CMOS technology development. The discussion covers the theory and methodology of how a MOSFET model, or semiconductor device models in general, can be implemented to be robust and efficient, turning device physics theory into a production-worthy SPICE simulation model. Special attention is paid to MOSFET characterization and model parameter extraction methodologies, making the book particularly useful for those interested or already engaged in work in the areas of semiconductor devices, compact modeling for SPICE simulation, and integrated circuit design.
Author: Radek Silhavy
Publisher: Springer
ISBN: 3319911899
Category : Technology & Engineering
Languages : en
Pages : 501
View
Book Description
This book presents the latest trends and approaches in artificial intelligence research and its application to intelligent systems. It discusses hybridization of algorithms, new trends in neural networks, optimisation algorithms and real-life issues related to the application of artificial methods. The book constitutes the second volume of the refereed proceedings of the Artificial Intelligence and Algorithms in Intelligent Systems of the 7th Computer Science On-line Conference 2018 (CSOC 2018), held online in April 2018.
Author: Simon M. Sze
Publisher: John Wiley & Sons
ISBN: 1119429137
Category : Technology & Engineering
Languages : en
Pages : 944
View
Book Description
The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.
Author: Shubham Sahay
Publisher: John Wiley & Sons
ISBN: 1119523532
Category : Technology & Engineering
Languages : en
Pages : 496
View
Book Description
A comprehensive one-volume reference on current JLFET methods, techniques, and research Advancements in transistor technology have driven the modern smart-device revolution—many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture.JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop referenceon the study and research on JLFETs This timely book covers the fundamental physics underlying JLFET operation, emerging architectures, modeling and simulation methods, comparative analyses of JLFET performance metrics, and several other interesting facts related to JLFETs. A calibrated simulation framework, including guidance on SentaurusTCAD software, enables researchers to investigate JLFETs, develop new architectures, and improve performance. This valuable resource: Addresses the design and architecture challenges faced by JLFET as a replacement for MOSFET Examines various approaches for analytical and compact modeling of JLFETs in circuit design and simulation Explains how to use Technology Computer-Aided Design software (TCAD) to produce numerical simulations of JLFETs Suggests research directions and potential applications of JLFETs Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an essential resource for CMOS device design researchers and advanced students in the field of physics and semiconductor devices.