1997
**Author**: R. Tyrrell Rockafellar

**Publisher:** Princeton University Press

**ISBN:** 9780691015866

**Category : **Mathematics

**Languages : **en

**Pages : **494

Get Book

**Book Description**
Topics treat systems of inequalities; Lagrange multipliers; minimax theorems and duality; structures of convex sets and functions; and more. Available for the first time in paperback, Rockafellar's classic study has firmly established a vital area not only for pure mathematics but also for applications to economics and engineering. Readers will find sound knowledge of linear algebra and introductory real analysis a major benefit to the assimilation of this work.

**Author**: R. Tyrrell Rockafellar

**Publisher:** Princeton University Press

**ISBN:** 9780691015866

**Category : **Mathematics

**Languages : **en

**Pages : **494

View

**Book Description**
Topics treat systems of inequalities; Lagrange multipliers; minimax theorems and duality; structures of convex sets and functions; and more. Available for the first time in paperback, Rockafellar's classic study has firmly established a vital area not only for pure mathematics but also for applications to economics and engineering. Readers will find sound knowledge of linear algebra and introductory real analysis a major benefit to the assimilation of this work.

**Author**: Georgii G. Magaril-Ilʹyaev

**Publisher:** American Mathematical Soc.

**ISBN:** 9780821889640

**Category : **Mathematics

**Languages : **en

**Pages : **183

View

**Book Description**
This book is an introduction to convex analysis and some of its applications. It starts with basis theory, which is explained within the framework of finite-dimensional spaces. The only prerequisites are basic analysis and simple geometry. The second chapter presents some applications of convex analysis, including problems of linear programming, geometry, and approximation. Special attention is paid to applications of convex analysis to Kolmogorov-type inequalities for derivatives of functions is one variable. Chapter 3 collects some results on geometry and convex analysis in infinite-dimensional spaces. A comprehensive introduction written "for beginners" illustrates the fundamentals of convex analysis in finite-dimensional spaces. The book can be used for an advanced undergraduate or graduate level course on convex analysis and its applications. It is also suitable for independent study of this extremely important area of mathematics.

**Author**: Jean-Baptiste Hiriart-Urruty

**Publisher:** Springer Science & Business Media

**ISBN:** 3540568506

**Category : **Mathematics

**Languages : **en

**Pages : **443

View

**Book Description**
Convex Analysis may be considered as a refinement of standard calculus, with equalities and approximations replaced by inequalities. As such, it can easily be integrated into a graduate study curriculum. Minimization algorithms, more specifically those adapted to non-differentiable functions, provide an immediate application of convex analysis to various fields related to optimization and operations research. These two topics making up the title of the book, reflect the two origins of the authors, who belong respectively to the academic world and to that of applications. Part I can be used as an introductory textbook (as a basis for courses, or for self-study); Part II continues this at a higher technical level and is addressed more to specialists, collecting results that so far have not appeared in books.

**Author**: Constantin Carathéodory

**Publisher:** Springer Science & Business Media

**ISBN:** 9780792369424

**Category : **Computers

**Languages : **en

**Pages : **594

View

**Book Description**
There has been much recent progress in global optimization algorithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fundamental role in the analysis and development of global optimization algorithms. This is due to the fact that virtually all nonconvex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held June 5-9, 2000 at Pythagorian, Samos, Greece. It was in honor of the memory of C. Caratheodory (1873-1950). It was endorsed by the Mathematical Programming Society (MPS) and by the Society for industrial and Applied Mathematics (SIAN) Activity Group in Optimization. This volume contains a selection of refereed papers based on invited and contributing talks presented at the conference. The two themes of convexity and global optimization pervade the book. The conference provided a forum for researchers working on different aspects of convexity and global optimization to present their recent discoveries, and to interact with people working on complementary aspects of mathematical programming. Audience: Faculty, graduate students, and researchers in mathematical programming, computer science, and engineering.

**Author**: Steven G. Krantz

**Publisher:** CRC Press

**ISBN:** 149870638X

**Category : **Mathematics

**Languages : **en

**Pages : **176

View

**Book Description**
Convexity is an ancient idea going back to Archimedes. Used sporadically in the mathematical literature over the centuries, today it is a flourishing area of research and a mathematical subject in its own right. Convexity is used in optimization theory, functional analysis, complex analysis, and other parts of mathematics. Convex Analysis introduces analytic tools for studying convexity and provides analytical applications of the concept. The book includes a general background on classical geometric theory which allows readers to obtain a glimpse of how modern mathematics is developed and how geometric ideas may be studied analytically. Featuring a user-friendly approach, the book contains copious examples and plenty of figures to illustrate the ideas presented. It also includes an appendix with the technical tools needed to understand certain arguments in the book, a tale of notation, and a thorough glossary to help readers with unfamiliar terms. This book is a definitive introductory text to the concept of convexity in the context of mathematical analysis and a suitable resource for students and faculty alike.

**Author**: Boris S. Mordukhovich

**Publisher:** Springer Nature

**ISBN:** 3030947858

**Category : **Mathematics

**Languages : **en

**Pages : **585

View

**Book Description**
This book presents a unified theory of convex functions, sets, and set-valued mappings in topological vector spaces with its specifications to locally convex, Banach and finite-dimensional settings. These developments and expositions are based on the powerful geometric approach of variational analysis, which resides on set extremality with its characterizations and specifications in the presence of convexity. Using this approach, the text consolidates the device of fundamental facts of generalized differential calculus to obtain novel results for convex sets, functions, and set-valued mappings in finite and infinite dimensions. It also explores topics beyond convexity using the fundamental machinery of convex analysis to develop nonconvex generalized differentiation and its applications. The text utilizes an adaptable framework designed with researchers as well as multiple levels of students in mind. It includes many exercises and figures suited to graduate classes in mathematical sciences that are also accessible to advanced students in economics, engineering, and other applications. In addition, it includes chapters on convex analysis and optimization in finite-dimensional spaces that will be useful to upper undergraduate students, whereas the work as a whole provides an ample resource to mathematicians and applied scientists, particularly experts in convex and variational analysis, optimization, and their applications.

**Author**: Erhan Çınlar

**Publisher:** Springer Science & Business Media

**ISBN:** 1461452570

**Category : **Mathematics

**Languages : **en

**Pages : **161

View

**Book Description**
This book offers a first course in analysis for scientists and engineers. It can be used at the advanced undergraduate level or as part of the curriculum in a graduate program. The book is built around metric spaces. In the first three chapters, the authors lay the foundational material and cover the all-important “four-C’s”: convergence, completeness, compactness, and continuity. In subsequent chapters, the basic tools of analysis are used to give brief introductions to differential and integral equations, convex analysis, and measure theory. The treatment is modern and aesthetically pleasing. It lays the groundwork for the needs of classical fields as well as the important new fields of optimization and probability theory.

**Author**: Jonathan Borwein

**Publisher:** Springer Science & Business Media

**ISBN:** 0387312560

**Category : **Mathematics

**Languages : **en

**Pages : **310

View

**Book Description**
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.

**Author**: Miroslav Bacak

**Publisher:** Walter de Gruyter GmbH & Co KG

**ISBN:** 3110391082

**Category : **Mathematics

**Languages : **en

**Pages : **193

View

**Book Description**
In the past two decades, convex analysis and optimization have been developed in Hadamard spaces. This book represents a first attempt to give a systematic account on the subject. Hadamard spaces are complete geodesic spaces of nonpositive curvature. They include Hilbert spaces, Hadamard manifolds, Euclidean buildings and many other important spaces. While the role of Hadamard spaces in geometry and geometric group theory has been studied for a long time, first analytical results appeared as late as in the 1990s. Remarkably, it turns out that Hadamard spaces are appropriate for the theory of convex sets and convex functions outside of linear spaces. Since convexity underpins a large number of results in the geometry of Hadamard spaces, we believe that its systematic study is of substantial interest. Optimization methods then address various computational issues and provide us with approximation algorithms which may be useful in sciences and engineering. We present a detailed description of such an application to computational phylogenetics. The book is primarily aimed at both graduate students and researchers in analysis and optimization, but it is accessible to advanced undergraduate students as well.

**Author**:

**Publisher:** Elsevier

**ISBN:** 9780080875224

**Category : **Mathematics

**Languages : **en

**Pages : **399

View

**Book Description**
Convex Analysis and Variational Problems