Convex Analysis and Variational Problems

Convex Analysis and Variational Problems PDF Author: Ivar Ekeland
Publisher: SIAM
ISBN: 9781611971088
Category : Mathematics
Languages : en
Pages : 414

View

Book Description
This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.

Convex Analysis

Convex Analysis PDF Author: Georgii G. Magaril-Ilʹyaev
Publisher: American Mathematical Soc.
ISBN: 9780821889640
Category : Mathematics
Languages : en
Pages : 183

View

Book Description
This book is an introduction to convex analysis and some of its applications. It starts with basis theory, which is explained within the framework of finite-dimensional spaces. The only prerequisites are basic analysis and simple geometry. The second chapter presents some applications of convex analysis, including problems of linear programming, geometry, and approximation. Special attention is paid to applications of convex analysis to Kolmogorov-type inequalities for derivatives of functions is one variable. Chapter 3 collects some results on geometry and convex analysis in infinite-dimensional spaces. A comprehensive introduction written "for beginners" illustrates the fundamentals of convex analysis in finite-dimensional spaces. The book can be used for an advanced undergraduate or graduate level course on convex analysis and its applications. It is also suitable for independent study of this extremely important area of mathematics.

Convex Variational Problems

Convex Variational Problems PDF Author: Michael Bildhauer
Publisher: Springer
ISBN: 3540448853
Category : Mathematics
Languages : en
Pages : 220

View

Book Description
The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions. This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.

Nonlinear Analysis and Variational Problems

Nonlinear Analysis and Variational Problems PDF Author: Panos M. Pardalos
Publisher: Springer Science & Business Media
ISBN: 1441901582
Category : Business & Economics
Languages : en
Pages : 490

View

Book Description
The chapters in this volume, written by international experts from different fields of mathematics, are devoted to honoring George Isac, a renowned mathematician. These contributions focus on recent developments in complementarity theory, variational principles, stability theory of functional equations, nonsmooth optimization, and several other important topics at the forefront of nonlinear analysis and optimization.

Convex Variational Problems with Linear, Nearly Linear And/or Anisotropic Growth Conditions

Convex Variational Problems with Linear, Nearly Linear And/or Anisotropic Growth Conditions PDF Author: Michael Bildhauer
Publisher: Springer Science & Business Media
ISBN: 9783540402985
Category : Mathematics
Languages : en
Pages : 217

View

Book Description
The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions. This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.

Convex Analysis and Global Optimization

Convex Analysis and Global Optimization PDF Author: Hoang Tuy
Publisher: Springer
ISBN: 331931484X
Category : Mathematics
Languages : en
Pages : 505

View

Book Description
This book presents state-of-the-art results and methodologies in modern global optimization, and has been a staple reference for researchers, engineers, advanced students (also in applied mathematics), and practitioners in various fields of engineering. The second edition has been brought up to date and continues to develop a coherent and rigorous theory of deterministic global optimization, highlighting the essential role of convex analysis. The text has been revised and expanded to meet the needs of research, education, and applications for many years to come. Updates for this new edition include: · Discussion of modern approaches to minimax, fixed point, and equilibrium theorems, and to nonconvex optimization; · Increased focus on dealing more efficiently with ill-posed problems of global optimization, particularly those with hard constraints; · Important discussions of decomposition methods for specially structured problems; · A complete revision of the chapter on nonconvex quadratic programming, in order to encompass the advances made in quadratic optimization since publication of the first edition. · Additionally, this new edition contains entirely new chapters devoted to monotonic optimization, polynomial optimization and optimization under equilibrium constraints, including bilevel programming, multiobjective programming, and optimization with variational inequality constraint. From the reviews of the first edition: The book gives a good review of the topic. ...The text is carefully constructed and well written, the exposition is clear. It leaves a remarkable impression of the concepts, tools and techniques in global optimization. It might also be used as a basis and guideline for lectures on this subject. Students as well as professionals will profitably read and use it.—Mathematical Methods of Operations Research, 49:3 (1999)

Advances in Convex Analysis and Global Optimization

Advances in Convex Analysis and Global Optimization PDF Author: Nicolas Hadjisavvas
Publisher: Springer Science & Business Media
ISBN: 146130279X
Category : Mathematics
Languages : en
Pages : 597

View

Book Description
There has been much recent progress in global optimization algo rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by the General Secretariat of Research and Tech nology of Greece, by the Ministry of Education of Greece, and several local Greek government agencies and companies. This volume contains a selective collection of refereed papers based on invited and contribut ing talks presented at this conference. The two themes of convexity and global optimization pervade this book. The conference provided a forum for researchers working on different aspects of convexity and global opti mization to present their recent discoveries, and to interact with people working on complementary aspects of mathematical programming.

Convex Analysis and Monotone Operator Theory in Hilbert Spaces

Convex Analysis and Monotone Operator Theory in Hilbert Spaces PDF Author: Heinz H. Bauschke
Publisher: Springer
ISBN: 3319483110
Category : Mathematics
Languages : en
Pages : 619

View

Book Description
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.

Lagrange Multiplier Approach to Variational Problems and Applications

Lagrange Multiplier Approach to Variational Problems and Applications PDF Author: Kazufumi Ito
Publisher: SIAM
ISBN: 9780898718614
Category : Mathematics
Languages : en
Pages : 359

View

Book Description
Lagrange multiplier theory provides a tool for the analysis of a general class of nonlinear variational problems and is the basis for developing efficient and powerful iterative methods for solving these problems. This comprehensive monograph analyzes Lagrange multiplier theory and shows its impact on the development of numerical algorithms for problems posed in a function space setting. The authors develop and analyze efficient algorithms for constrained optimization and convex optimization problems based on the augumented Lagrangian concept and cover such topics as sensitivity analysis, convex optimization, second order methods, and shape sensitivity calculus. General theory is applied to challenging problems in optimal control of partial differential equations, image analysis, mechanical contact and friction problems, and American options for the Black-Scholes model.

Convex Analysis and Minimization Algorithms I

Convex Analysis and Minimization Algorithms I PDF Author: Jean-Baptiste Hiriart-Urruty
Publisher: Springer Science & Business Media
ISBN: 3540568506
Category : Mathematics
Languages : en
Pages : 418

View

Book Description
Convex Analysis may be considered as a refinement of standard calculus, with equalities and approximations replaced by inequalities. As such, it can easily be integrated into a graduate study curriculum. Minimization algorithms, more specifically those adapted to non-differentiable functions, provide an immediate application of convex analysis to various fields related to optimization and operations research. These two topics making up the title of the book, reflect the two origins of the authors, who belong respectively to the academic world and to that of applications. Part I can be used as an introductory textbook (as a basis for courses, or for self-study); Part II continues this at a higher technical level and is addressed more to specialists, collecting results that so far have not appeared in books.