2022-04-24
Author: Boris S. Mordukhovich
Publisher: Springer Nature
ISBN: 3030947858
Category : Mathematics
Languages : en
Pages : 585
Get Book
Book Description
This book presents a unified theory of convex functions, sets, and set-valued mappings in topological vector spaces with its specifications to locally convex, Banach and finite-dimensional settings. These developments and expositions are based on the powerful geometric approach of variational analysis, which resides on set extremality with its characterizations and specifications in the presence of convexity. Using this approach, the text consolidates the device of fundamental facts of generalized differential calculus to obtain novel results for convex sets, functions, and set-valued mappings in finite and infinite dimensions. It also explores topics beyond convexity using the fundamental machinery of convex analysis to develop nonconvex generalized differentiation and its applications. The text utilizes an adaptable framework designed with researchers as well as multiple levels of students in mind. It includes many exercises and figures suited to graduate classes in mathematical sciences that are also accessible to advanced students in economics, engineering, and other applications. In addition, it includes chapters on convex analysis and optimization in finite-dimensional spaces that will be useful to upper undergraduate students, whereas the work as a whole provides an ample resource to mathematicians and applied scientists, particularly experts in convex and variational analysis, optimization, and their applications.
Author: Boris S. Mordukhovich
Publisher: Springer Nature
ISBN: 3030947858
Category : Mathematics
Languages : en
Pages : 585
View
Book Description
This book presents a unified theory of convex functions, sets, and set-valued mappings in topological vector spaces with its specifications to locally convex, Banach and finite-dimensional settings. These developments and expositions are based on the powerful geometric approach of variational analysis, which resides on set extremality with its characterizations and specifications in the presence of convexity. Using this approach, the text consolidates the device of fundamental facts of generalized differential calculus to obtain novel results for convex sets, functions, and set-valued mappings in finite and infinite dimensions. It also explores topics beyond convexity using the fundamental machinery of convex analysis to develop nonconvex generalized differentiation and its applications. The text utilizes an adaptable framework designed with researchers as well as multiple levels of students in mind. It includes many exercises and figures suited to graduate classes in mathematical sciences that are also accessible to advanced students in economics, engineering, and other applications. In addition, it includes chapters on convex analysis and optimization in finite-dimensional spaces that will be useful to upper undergraduate students, whereas the work as a whole provides an ample resource to mathematicians and applied scientists, particularly experts in convex and variational analysis, optimization, and their applications.
Author: Radu Ioan Bot
Publisher: Springer Science & Business Media
ISBN: 3642049001
Category : Business & Economics
Languages : en
Pages : 164
View
Book Description
The results presented in this book originate from the last decade research work of the author in the ?eld of duality theory in convex optimization. The reputation of duality in the optimization theory comes mainly from the major role that it plays in formulating necessary and suf?cient optimality conditions and, consequently, in generatingdifferent algorithmic approachesfor solving mathematical programming problems. The investigations made in this work prove the importance of the duality theory beyond these aspects and emphasize its strong connections with different topics in convex analysis, nonlinear analysis, functional analysis and in the theory of monotone operators. The ?rst part of the book brings to the attention of the reader the perturbation approach as a fundamental tool for developing the so-called conjugate duality t- ory. The classical Lagrange and Fenchel duality approaches are particular instances of this general concept. More than that, the generalized interior point regularity conditions stated in the past for the two mentioned situations turn out to be p- ticularizations of the ones given in this general setting. In our investigations, the perturbationapproachrepresentsthestartingpointforderivingnewdualityconcepts for several classes of convex optimization problems. Moreover, via this approach, generalized Moreau–Rockafellar formulae are provided and, in connection with them, a new class of regularity conditions, called closedness-type conditions, for both stable strong duality and strong duality is introduced. By stable strong duality we understand the situation in which strong duality still holds whenever perturbing the objective function of the primal problem with a linear continuous functional.
Author: Nicolas Hadjisavvas
Publisher: Springer Science & Business Media
ISBN: 146130279X
Category : Mathematics
Languages : en
Pages : 597
View
Book Description
There has been much recent progress in global optimization algo rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by the General Secretariat of Research and Tech nology of Greece, by the Ministry of Education of Greece, and several local Greek government agencies and companies. This volume contains a selective collection of refereed papers based on invited and contribut ing talks presented at this conference. The two themes of convexity and global optimization pervade this book. The conference provided a forum for researchers working on different aspects of convexity and global opti mization to present their recent discoveries, and to interact with people working on complementary aspects of mathematical programming.
Author: Stephen Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 716
View
Book Description
A comprehensive introduction to the tools, techniques and applications of convex optimization.
Author: Jonathan Borwein
Publisher: Springer Science & Business Media
ISBN: 0387312560
Category : Mathematics
Languages : en
Pages : 310
View
Book Description
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.
Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529310
Category : Mathematics
Languages : en
Pages : 256
View
Book Description
An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).
Author: R. Tyrrell Rockafellar
Publisher: Springer Science & Business Media
ISBN: 3540627723
Category : Mathematics
Languages : en
Pages : 736
View
Book Description
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Author: David H. Bailey
Publisher: Springer Nature
ISBN: 3030365689
Category : Mathematics
Languages : en
Pages : 439
View
Book Description
Students and researchers from all fields of mathematics are invited to read and treasure this special Proceedings. A conference was held 25 –29 September 2017 at Noah’s On the Beach, Newcastle, Australia, to commemorate the life and work of Jonathan M. Borwein, a mathematician extraordinaire whose untimely passing in August 2016 was a sorry loss to mathematics and to so many members of its community, a loss that continues to be keenly felt. A polymath, Jonathan Borwein ranks among the most wide ranging and influential mathematicians of the last 50 years, making significant contributions to an exceptional diversity of areas and substantially expanding the use of the computer as a tool of the research mathematician. The contributions in this commemorative volume probe Dr. Borwein's ongoing legacy in areas where he did some of his most outstanding work: Applied Analysis, Optimization and Convex Functions; Mathematics Education; Financial Mathematics; plus Number Theory, Special Functions and Pi, all tinged by the double prisms of Experimental Mathematics and Visualization, methodologies he championed.
Author: Jan Brinkhuis
Publisher: Springer Nature
ISBN: 3030418049
Category : Business & Economics
Languages : en
Pages : 257
View
Book Description
This textbook offers graduate students a concise introduction to the classic notions of convex optimization. Written in a highly accessible style and including numerous examples and illustrations, it presents everything readers need to know about convexity and convex optimization. The book introduces a systematic three-step method for doing everything, which can be summarized as "conify, work, deconify". It starts with the concept of convex sets, their primal description, constructions, topological properties and dual description, and then moves on to convex functions and the fundamental principles of convex optimization and their use in the complete analysis of convex optimization problems by means of a systematic four-step method. Lastly, it includes chapters on alternative formulations of optimality conditions and on illustrations of their use. "The author deals with the delicate subjects in a precise yet light-minded spirit... For experts in the field, this book not only offers a unifying view, but also opens a door to new discoveries in convexity and optimization...perfectly suited for classroom teaching." Shuzhong Zhang, Professor of Industrial and Systems Engineering, University of Minnesota
Author: Pierre Alart
Publisher: Springer Science & Business Media
ISBN: 0387291954
Category : Technology & Engineering
Languages : en
Pages : 320
View
Book Description
This book’s title, Nonsmooth Mechanics and Analysis, refers to a major domain of mechanics, particularly those initiated by the works of Jean Jacques Moreau. Nonsmooth mechanics concerns mechanical situations with possible nondifferentiable relationships, eventually discontinuous, as unilateral contact, dry friction, collisions, plasticity, damage, and phase transition. The basis of the approach consists in dealing with such problems without resorting to any regularization process. Indeed, the nonsmoothness is due to simplified mechanical modeling; a more sophisticated model would require too large a number of variables, and sometimes the mechanical information is not available via experimental investigations. Therefore, the mathematical formulation becomes nonsmooth; regularizing would only be a trick of arithmetic without any physical justification. Nonsmooth analysis was developed, especially in Montpellier, to provide specific theoretical and numerical tools to deal with nonsmoothness. It is important not only in mechanics but also in physics, robotics, and economics. Audience This book is intended for researchers in mathematics and mechanics.