2013-06-17
Author: Steven Vogel
Publisher: Princeton University Press
ISBN: 0691155666
Category : Science
Languages : en
Pages : 638
Get Book
Book Description
The classic textbook on comparative biomechanics—revised and expanded Why do you switch from walking to running at a specific speed? Why do tall trees rarely blow over in high winds? And why does a spore ejected into air at seventy miles per hour travel only a fraction of an inch? Comparative Biomechanics is the first and only textbook that takes a comprehensive look at the mechanical aspects of life—covering animals and plants, structure and movement, and solids and fluids. An ideal entry point into the ways living creatures interact with their immediate physical world, this revised and updated edition examines how the forms and activities of animals and plants reflect the materials available to nature, considers rules for fluid flow and structural design, and explores how organisms contend with environmental forces. Drawing on physics and mechanical engineering, Steven Vogel looks at how animals swim and fly, modes of terrestrial locomotion, organism responses to winds and water currents, circulatory and suspension-feeding systems, and the relationship between size and mechanical design. He also investigates links between the properties of biological materials—such as spider silk, jellyfish jelly, and muscle—and their structural and functional roles. Early chapters and appendices introduce relevant physical variables for quantification, and problem sets are provided at the end of each chapter. Comparative Biomechanics is useful for physical scientists and engineers seeking a guide to state-of-the-art biomechanics. For a wider audience, the textbook establishes the basic biological context for applied areas—including ergonomics, orthopedics, mechanical prosthetics, kinesiology, sports medicine, and biomimetics—and provides materials for exhibit designers at science museums. Problem sets at the ends of chapters Appendices cover basic background information Updated and expanded documentation and materials Revised figures and text Increased coverage of friction, viscoelastic materials, surface tension, diverse modes of locomotion, and biomimetics
Author: Steven Vogel
Publisher: Princeton University Press
ISBN: 0691155666
Category : Science
Languages : en
Pages : 638
View
Book Description
The classic textbook on comparative biomechanics—revised and expanded Why do you switch from walking to running at a specific speed? Why do tall trees rarely blow over in high winds? And why does a spore ejected into air at seventy miles per hour travel only a fraction of an inch? Comparative Biomechanics is the first and only textbook that takes a comprehensive look at the mechanical aspects of life—covering animals and plants, structure and movement, and solids and fluids. An ideal entry point into the ways living creatures interact with their immediate physical world, this revised and updated edition examines how the forms and activities of animals and plants reflect the materials available to nature, considers rules for fluid flow and structural design, and explores how organisms contend with environmental forces. Drawing on physics and mechanical engineering, Steven Vogel looks at how animals swim and fly, modes of terrestrial locomotion, organism responses to winds and water currents, circulatory and suspension-feeding systems, and the relationship between size and mechanical design. He also investigates links between the properties of biological materials—such as spider silk, jellyfish jelly, and muscle—and their structural and functional roles. Early chapters and appendices introduce relevant physical variables for quantification, and problem sets are provided at the end of each chapter. Comparative Biomechanics is useful for physical scientists and engineers seeking a guide to state-of-the-art biomechanics. For a wider audience, the textbook establishes the basic biological context for applied areas—including ergonomics, orthopedics, mechanical prosthetics, kinesiology, sports medicine, and biomimetics—and provides materials for exhibit designers at science museums. Problem sets at the ends of chapters Appendices cover basic background information Updated and expanded documentation and materials Revised figures and text Increased coverage of friction, viscoelastic materials, surface tension, diverse modes of locomotion, and biomimetics
Author: Graham Taylor
Publisher: OUP Oxford
ISBN: 0191009288
Category : Science
Languages : en
Pages : 176
View
Book Description
Evolutionary biomechanics is the study of evolution through the analysis of biomechanical systems. Its unique advantage is the precision with which physical constraints and performance can be predicted from first principles. Instead of reviewing the entire breadth of the biomechanical literature, a few key examples are explored in depth as vehicles for discussing fundamental concepts, analytical techniques, and evolutionary theory. Each chapter develops a conceptual theme, developing the underlying theory and techniques required for analyses in evolutionary biomechanics. Examples from terrestrial biomechanics, metabolic scaling, and bird flight are used to analyse how physics constrains the design space that natural selection is free to explore, and how adaptive evolution finds solutions to the trade-offs between multiple complex conflicting performance objectives. Evolutionary Biomechanics is suitable for graduate level students and professional researchers in the fields of biomechanics, physiology, evolutionary biology and palaeontology. It will also be of relevance and use to researchers in the physical sciences and engineering.
Author: Wyatt Logan Korff
Publisher:
ISBN:
Category :
Languages : en
Pages : 406
View
Book Description
Author: Dr. Praveen Kumar
Publisher: Friends Publications (India)
ISBN: 9390649560
Category : Education
Languages : en
Pages : 194
View
Book Description
Biomechanics is the sport science field that applies the laws of mechanics and physics to human performance, in order to gain a greater understanding of performance in athletic events through modeling, simulation and measurement. It is also necessary to have a good understanding of the application of physics to sport, as physical principles such as motion, resistance, momentum and friction play a part in most sporting events. The general role of biomechanics is to understand the mechanical cause-effect relationships that determine the motions of living organisms. In relation to sport, biomechanics contributes to the description, explanation, and prediction of the mechanical aspects of human exercise, sport and play. Kinesiology is the scientific study of human or non-human body movement. Kinesiology addresses physiological, biomechanical, and psychological mechanisms of movement. Applications of kinesiology to human health (i.e. human kinesiology) include biomechanics and orthopedics; strength and conditioning; sport psychology; methods of rehabilitation, such as physical and occupational therapy; and sport and exercise. Studies of human and animal motion include measures from motion tracking systems, electrophysiology of muscle and brain activity, various methods for monitoring physiological function, and other behavioral and cognitive research techniques.
Author: V.L. Bels
Publisher: Springer Science & Business Media
ISBN: 364257906X
Category : Science
Languages : en
Pages : 363
View
Book Description
Although feeding is not yet been thoroughly studied in many vertebrates taxa, and different conceptual and methodological approaches of the concerned scientists make a synthesis difficult, the aim of the editors is to provide a comprehensive overview of the feeding design in aquatic and terrestrial vertebrates with a detailed description of its functional properties. The book emphasizes the constant interaction between function and form, behaviour and morphology in the course of evolution of the feeding apparatus and way of feeding both complementary and basically related to survival interspecific competition, adaptation to environmental changes and adaptive radiations. Special stress is drawn onquantification of the observational and experimental data on the morphology and biomechanics of the feeding design and its element jaws, teeth, hyoidean apparatus, tongue, in order to allow present and further comparisons in an evolutionary perspective.
Author: R.W. Blake
Publisher: Garland Science
ISBN: 1000443299
Category : Science
Languages : en
Pages : 360
View
Book Description
Biomechanics in Animal Behaviour offers a unique approach by integrating fully the fields of animal behaviour and biomechanics. It demonstrates how an understanding of biomechanical issues is an important part of evaluating and predicting animal behaviour. The book examines how behaviour is determined and/or constrained by biomechanical variables such as hydrodynamics, aerodynamics, kinematics, and the mechanical properties of biomaterials.
Author: Cynthia J. Roberts
Publisher: Kugler Publications
ISBN: 9062998860
Category : Medical
Languages : en
Pages : 522
View
Book Description
Covering all major components of the ocular system, this state-of-the-art text is essential for vision scientists, biomedical engineers, and advanced clinicians with an interest in the role of mechanics in ocular function, disease, therapeutics, and surgery. With every chapter, leading experts strengthen the arguments that biomechanics is an indispensable and rapidly evolving tool for understanding and managing ocular disease.
Author: Vaclav Klika
Publisher: BoD – Books on Demand
ISBN: 953307969X
Category : Medical
Languages : en
Pages : 424
View
Book Description
During last couple of years there has been an increasing recognition that problems arising in biology or related to medicine really need a multidisciplinary approach. For this reason some special branches of both applied theoretical physics and mathematics have recently emerged such as biomechanics, mechanobiology, mathematical biology, biothermodynamics. The Biomechanics in Application is focusing on experimental praxis and clinical findings. The first section is devoted to Injury and clinical biomechanics including overview of the biomechanics of musculoskeletal injury, distraction osteogenesis in mandible, or consequences of drilling. The next section is on Spine biomechanics with biomechanical models for upper limb after spinal cord injury and an animal model looking at changes occurring as a consequence of spinal cord injury. Section Musculoskeletal Biomechanics includes the chapter which is devoted to dynamical stability of lumbo-pelvi-femoral complex which involves analysis of relationship among appropriate anatomical structures in this region. The fourth section is on Human and Animal Biomechanics with contributions from foot biomechanics and chewing rhythms in mammals, or adaptations of bats. The last section, Sport Biomechanics, is discussing various measurement techniques for assessment and analysis of movement and two applications in swimming.
Author: David E. Alexander
Publisher: Academic Press
ISBN: 0128498978
Category : Science
Languages : en
Pages : 202
View
Book Description
Nature’s Machines: An Introduction to Organismal Biomechanics presents the fundamental principles of biomechanics in a concise, accessible way while maintaining necessary rigor. It covers the central principles of whole-organism biomechanics as they apply across the animal and plant kingdoms, featuring brief, tightly-focused coverage that does for biologists what H. M. Frost’s 1967 Introduction to Biomechanics did for physicians. Frequently encountered, basic concepts such as stress and strain, Young’s modulus, force coefficients, viscosity, and Reynolds number are introduced in early chapters in a self-contained format, making them quickly available for learning and as a refresher. More sophisticated, integrative concepts such as viscoelasticity or properties of hydrostats are covered in the later chapters, where they draw on information from multiple earlier sections of the book. Animal and plant biomechanics is now a common research area widely acknowledged by organismal biologists to have broad relevance. Most of the day-to-day activities of an animal involve mechanical processes, and to the extent that organisms are shaped by adaptive evolution, many of those adaptations are constrained and channelized by mechanical properties. The similarity in body shape of a porpoise and a tuna is no coincidence. Many may feel that they have an intuitive understanding of many of the mechanical processes that affect animals and plants, but careful biomechanical analyses often yield counterintuitive results: soft, squishy kelp may be better at withstanding pounding waves during storms than hard-shelled mollusks; really small swimmers might benefit from being spherical rather than streamlined; our bones can operate without breaking for decades, whereas steel surgical implants exhibit fatigue failures in a few months if not fully supported by bone. Offers organismal biologists and biologists in other areas a background in biomechanics to better understand the research literature and to explore the possibility of using biomechanics approaches in their own work Provides an introductory presentation of the everyday mechanical challenges faced by animals and plants Functions as recommended or required reading for advanced undergraduate biology majors taking courses in biomechanics, supplemental reading in a general organismal biology course, or background reading for a biomechanics seminar course
Author: Zhongmin Jin
Publisher: Woodhead Publishing
ISBN: 0128227621
Category : Technology & Engineering
Languages : en
Pages : 632
View
Book Description
Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues, Second Edition reviews how a wide range of materials are modeled and applied. Chapters cover basic concepts for modeling of biomechanics and biotribology, the fundamentals of computational modeling of biomechanics in the musculoskeletal system, finite element modeling in the musculoskeletal system, computational modeling from a cells and tissues perspective, and computational modeling of the biomechanics and biotribology interactions, looking at complex joint structures. This book is a comprehensive resource for professionals in the biomedical market, materials scientists and biomechanical engineers, and academics in related fields. This important new edition provides an up-to-date overview of the most recent research and developments involving hydroxyapatite as a key material in medicine and its application, including new content on novel technologies, biomorphic hydroxyapatite and more. Provides detailed, introductory coverage of modeling of cells and tissues, modeling of biomaterials and interfaces, biomechanics and biotribology Discusses applications of modeling for joint replacements and applications of computational modeling in tissue engineering Offers a holistic perspective, from cells and small ligaments to complex joint interactions